

International Journal of Modern Engineering & Management Research | Special Issue | Aug. 2017 43

Abstract—The increasing frequency with

which serious security flaws are discovered

and the increasing rapidity with which they

are exploited have made it necessary for pro-

grams to be updated far more frequently than

in the past. While binary updates are

generally far more convenient than source

code updates, the distribution of pointers

throughout executable files makes it much

harder to pro-duce compact patches.

In contrast to earlier work which relies upon

knowledge of the internal structure of a

particular platform's executable files, we

describe a na¨ıve method which produces

competitively small patches for any

executable files.

1. INTRODUCTION
Historically, binary patches have been

constructed using two basic operations,

copying and insertion. Using either substring

matching or hashing techniques [Ma00],

portions of the new file are matched with

portions of the old file; those regions are

copied, while the remaining “new” bytes are

stored in the patch file and in-serted. Patches

generated in this manner can therefore be

considered as programs consisting of two

instructions, COPY and INSERT.

Unfortunately, any source code

modification will usually cause changes

throughout an executable file. Adding or

removing a small number of bytes of code or

data will change the relative position of blocks

of code, adjusting the displacement of relative

branches which jump over the modified region;

similarly, any data located after the modified

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Special Issue | August 2017 ISSN: 2320-9984 (Online)

7. Naive Differences of Executable Code

Jatin Beohar
Department of Information Technology Engineering,

Jabalpur Engineering College

Jabalpur (M.P.), [INDIA]

Email: Required

All India Seminar on

Futuristic Trends in Telecommunication Engineering & Telecom Panorama –

Fundamentals and Evolving Technology, with Particular

Reference to Smart City on 5th – 6th August 2017

Organized by
The Institution of Engineers (India)

Jabalpur Local Centre

G. Shashank Rao
B.E.(Final Year),

Jabalpur Engineering College

Jabalpur (M.P.), [INDIA]

Email: Required

Jeevesh Kataria
Department of Information Technology Engineering,

Jabalpur Engineering College

Jabalpur (M.P.), [INDIA]

Email: Required

International Journal of Modern Engineering & Management Research | Special Issue | Aug. 2017 44

region will have a different address, causing

data pointers to be modified throughout the

file. This causes patches generated with the

traditional copy-and-insert method to be much

larger than necessary; a one-line source code

patch in a 500kB executable could translate

into a 50kB patch file.

One solution to this problem relies upon

knowledge of the internal structure of an

executable file. If a pointer to address A in the

old executable file changes to point at address

B in the new executable file, it is very likely

that other pointers to address A will also

change in the same manner. As a result, by

effectively disassembling the entire file and

recording the first instance of each such

substitution, one can predict future

substitutions, thereby obviating the need to

record them [BMM99]. However, the

necessary disassembly means that any tools

using this approach will be entirely platform-

dependent.

2. BSDiff

In order to solve the ‘pointer problem’ in

a portable manner, we make two important

observations: First, in the regions of an

executable file not directly affected by a

modification, the differences will generally be

quite sparse. Not only will the modified

addresses constitute only a small portion of the

compiled code, but addresses are most likely to

only change in their least significant one or

two bytes. Second, data and code tends to be

moved around in blocks; consequently, locality

of reference will lead to a large number of

different (nearby) addresses being adjusted by

the same amount. These two observations lead

to the important fact that if the regions in two

versions of an executable program which

correspond to the same lines of source code are

matched against each other, the bytewise

differences will be mostly zero, and even when

non-zero will take certain values far more often

than others — in short, the string of bytewise

differences will be highly compressible.

We now construct binary patches as

follows. First, we read the old file and perform

some sort of indexing, either based on hashing

[Tr99] or suffix sorting (e.g., [LS99]). Next,

using this index, we pass through the new file

and find a set of regions which match exactly

against regions of the old file. For reasons

which will become evident later, we only

record regions which con-tain at least 8 bytes

not matching the forward-extension of the

previous match (i.e., if the previous match is

new[x . . . x + k] = old[y . . . y + k], we look

for a match new[x' . . . x' + k'] = old[y' . . . y' +

k'] with at least 8 distinct i such that new[x' + i]

≠ old [x' + i + (y - x)]).

Conventional binary patch tools would

translate this set of perfect matches directly

into a patch file. Instead, we generate a

pairwise disjoint set of “approximate matches”

by extending the matches in each direction,

subject to the requirement that every suffix of

the forward-extension (and every prefix of the

backwards- extension) matches in at least 50%

of its bytes. These approximate matches will

now roughly correspond to blocks of

executable code derived from unmodified

regions of source code, while the regions of the

new file which are not part of an approximate

match will roughly correspond to modified

lines of source code. This process of extending

the matches is why we ignore any matches

which are not “better” than the previous match

by 8 bytes.

While its performance does not quite

match that of a platform-specific tool, we

believe that BSDiff probably attains close to

the best possible performance from a platform-

independent tool.

The patch file is then constructed of

three parts: First, a control file containing ADD

and INSERT instructions; second, a

‘difference’ file, containing the bytewise

differences of the approximate matches; and

third, an ‘extra’ file, containing the bytes

which were not part of an approximate match.

Each ADD instruction specifies an offset in the

old file and a length; the appropriate number of

bytes are read from the old file and added to

the same number of bytes from the difference

file. INSERT instructions merely specify a

Naive Differences of Executable Code

Author(s): G. Shashank Rao, Jatin Beohar, Jeevesh Kataria | JEC, Jabalpur

International Journal of Modern Engineering & Management Research | Special Issue | Aug. 2017 45

length; the specified number of bytes is read

from the extra file. While these three files

together are slightly larger than the original

target file, the control and difference files are

highly compressible; in particular, bzip2 tends

to perform remarkably well (probably due to

the highly structured nature of these two files).

Thus BSDiff can be used which

produces patches with a reduction by a factor

of approx 58.3.

3. CONCLUSIONS

We have presented an algorithm for

generating binary patches which, applied to

two versions of an executable program,

consistently generates patches considerably

smaller than those produced by the currently

preeminent binary patch tools; when applied to

security updates, the patches produced are

extraordinarily compact.

REFERENCES:

[1] B.S. Baker, U. Manber, and R. Muth,

Com-pressing Differences of

Executable Code, ACM SIGPLAN

Workshop on Compiler Support for

System Software, 1999.

[2] N.S. Larsson, K. Sadakane, Faster

Suffix Sorting, LU-CS-TR:99-214,

Department of Computer Science,

und University, 1999.

[3] J.P. MacDonald, File System Support

for Delta Compression, Master’s

Thesis, University of California at

Berkeley, 2000.

[4] Pocket Soft Inc, .RTPatch,

[5] http://www.pocketsoft.com 2001.

[6] A. Tridgell, Efficient Algorithms for

Sorting and Synchronization, Ph.D.

Thesis, The Australian National

University, 1999.

Naive Differences of Executable Code

Author(s): G. Shashank Rao, Jatin Beohar, Jeevesh Kataria | JEC, Jabalpur

