

International Journal of Modern Engineering & Management Research | Vol 2 | Issue 2 | June 2014 37

Abstract:—Proposed work is a new approach

to design FFT algorithm, for that significant

logics are made on the basic butterfly and

total numbers of multiplications are reduced.

Conventionally, twelve basic butterflies are

required for DIF-FFT, but in this work only

four basic butterflies are used to perform the

same work that is done by twelve butterflies in

the conventional one. Apart from this, total

four multiplications, one addition and one

subtraction are required for performing

multiplication between two complex numbers.

But in proposed work these four

multiplications are reduced into only three

multiplications on the cost of one extra

addition and two extra subtractions, still it is

a fair deal if area and speed are concerned.

After the reduction in total number of

multipliers of FFT, the rest of the

multiplications are done by Vedic

multiplication technique. Here Vedic

multiplication technique is used for

multiplication part because it is observed that

Vedic methodology is much better as far as

speed is concerned. Thus proposed work is a

two layer optimization approach which makes

FFT area and speed optimized.

1. INTRODUCTION

Electronic signal is an electric current

used to convey data from one location to

another. Signals are of two types namely-

Discrete signals and Continuous signals.

Discrete signal number of elements in

the set, as well as the possible values of each

element are finite, are countable and can be

represented with computer bits.

Figure 1: Hierarchy of Fourier Transform

The algorithm used to process discrete as

well as continuous signals is called Fourier

transform. But based on the type of signals

they process, this Fourier transform is further

classified into different categories namely-

1. DTFT or Discrete Time Fourier Transform.

2. DFT or Discrete Fourier Transform.

3. FT or simple Fourier Transform

4. Fourier series.

International Journal of Modern Engineering
& Management Research

Website: www.ijmemr.org

Volume 2 Issue 2 | June 2014 ISSN: 2320-9984 (Online)

A Modified Method for Optimizing Area and Speed in FFT

Processors

Amit Kumar Mishra
M. Tech. Scholar,

Shri Ram Institute of Technology

Jabalpur, (M.P) [India]

Email: amit_2440@yahoo.co.in

Prof. Ravi Mohan
Associate Professor,

Department of Electronics & Communication Engg,

Shri Ram Institute of Technology,

Jabalpur, (M.P.) [INDIA]

Email: ravimohan7677@yahoo.co.in

International Journal of Modern Engineering & Management Research | Vol 2 | Issue 2 | June 2014 38

Since DFT handles a finite amount of

data it and it can be implemented in computers

by numerica l a lgor i thms. These

implementations usually employ efficient FFT

(Fast Fourier Transform) algorithm. FFT is one

of the most powerful tools in digital signal

processing applications and it is also the basic

transformation employed by the latest wireless

communication standards. Fast Fourier

Transform (FFT) processor is widely used in

different applications, such as-WLAN, Image

process, Spectrum measurements, Radar and

multimedia communication services.

2. MOTIVATION

In many real-time DSP applications,

speed is the prime target and achieving this

may be done at the expense of the accuracy of

the arithmetic operations. Signal processing

deals with signals distorted with the noise

caused by non-ideal sensors, quantization

processes, amplifiers, etc., as well as

algorithms based on certain assumptions, so

inaccurate results are inevitable.

There has been extensive work on high

speed multipliers at technology, physical,

circuit and logic levels. A system’s

performance can be measured by the working

of the multiplier because the multiplier is

normally the slowest element in the any

system. Also, it is generally the most area

consuming. So, optimizing the area and speed

and power of the multiplier is a major design

issue.

3. PROBLEM STATEMENT AND

ENCOUNTER

FFT is largely used in many applications

but whatever done till now in the field of FFT

and Vedic mathematics was although an

achievement in itself but was not sufficient and

perfect since it consists of few limitations.

After going through reference papers it is

observed that-

 Reference paper 1, they have utilized

the elements of target device only

and did not use any additional

multiplier because of which their

area was although reduced but they

could do nothing for speed

enhancement.

 Reference paper 2, they had used

pipelining architecture to improve

the throughput, but along with this

additional multipliers are also used

that had negative impact on area

consumption.

 Reference paper 3, they had used

Urdhva Triyagbhyam method to

perform multiplications. And the

carry bits generated after

multiplication are added by using

tree addition structure. If only speed

is concerned then tree addition

structure is the best method but if

area is concerned then there are other

methods which are even better then

tree addition structure.

The problem encountered in these base

papers is tried to be solved in the proposed

work by the following way-

 Total number of basic butterflies of

DIF-FFT is reduced to 1/3rd so that

area consumption could be reduced.

 Total number of multipliers required

for complex multiplication is reduced

by new proposed method.

 V ed i c m u l t i p l i e r (U r d h v a

Triyagbhyam) is used to increase the

speed.

4. PROPOSED TECHNIQUE

Consider two inputs Z1=(x1+iy1) and

Z2=(x2 + iy2). On taking conventional

multiplication of these inputs they gives the

outputs as- Real Part(R) = (x1x2-y1y2) and

Imaginary Part (I) = (x1y2+y1x2). On

implementing it requires four multipliers and

one adder and one subtractor.

A Modified Method for Optimizing Area and Speed in FFT Processors

Author(s): Amit Kumar Mishra, Prof. Ravi Mohan, SRIT, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 2 | Issue 2 | June 2014 39

But if the two inputs are multiplied by

the proposed approach the outputs are given as

Real Part(R) = x1(x2+y2)-y2(x1+y1) &

Imaginary Part(I) = x1(x2+y2)-x2(x1-y1)

Upon adding the above two terms (R and

I) it gives the same value as simple

multiplication. But implementation of R and I

requires three multipliers and two adder and

three subtractors (term x1(x1+x2) is counted

once because it is repeating in real and

imaginary part), so one multiplier is reduced

on cost of one adder and two subtractor.

Proposed complex multiplication need

one extra adder and two extra subtractors on

the cost of one reduced multiplier.

A 16 bit adder need 16 Full adder and 16

bit subtractor need 16 Full adders with 16

XOR gates. But one 16 bit multiplier needs

16x16=256 AND gate and 32x15=480 Full

adder (for conventional multiplication) and this

can be reducing maximum up-to 75% of

conventional requirement even if advance

multiplication techniques like Wallace, Vedic,

booth etc. are used.

Therefore it can be concluded that still

one adder and two subtractions is a better deal

instead of using one 16 bit multiplier.

 Table 1: Comparison of no. of add/sub and

multiplication between conventional and

proposed work.

Let us take an example to explain the

above discussed method more clearly-

Suppose z1=3.25+3j and z2=7.5+1.17j

are two inputs to be multiplied. The real and

imaginary parts after their multiplication are

found out as-

R => 3.25(7.5+1.17)-1.17(3.25+3)

=>3.25(8.67)-1.17(3.25)

=> 28.1775-3.8025

=> 20.865

I => 3.25(7.5+1.17)-7.5(3.25-3)

=> 3.25(8.67)-7.5(.25)

=> 28.1775-1,875

=>26.3025

Let’s have the above example in binary

form

X1(3.25) => 000000000011.0100 and

X2(7.5) => 000000000111.1000

Y1 (3) => 000000000011.0000 and

Y2 (1.1875) => 000000000001.0011

X2+Y2 (8.6875) => 000000001000.1011

X1+Y1 (6.25) => 000000000110.0100

X1-Y1 (0.25) => 000000000000.0100

{ X 1 * (X 2 + Y 2) } (2 8 . 2 3 4 3 7 5) = >

00011100.00111100

{Y2*(X1+Y1)}(7.421875)=> 00000111.01101100

{X2*(X1-Y1)}(1.875)=> 00000001.11100000

{X1*(X2+Y2) – Y2*(X1+Y1)}(20.8125) =>

00010100.11010000

{X1*(X2+Y2) – X2*(X1-Y1)}(26.359375)=>

00011010.01011100

So the final Real part is R= 20.8125 and

imaginary part is I= 26.359375.

64 Points FFT

Conventional Proposed

Multiply Add/Sub Multi-

ply

Add/

Sub

6*32*4 = 768 6*32*2 =

384

6*32*3

= 576

6*32*5

= 960

8 Points FFT

Conventional Proposed

Multiply Add/Sub Multi-

ply

Add/

Sub

3*4*4 =

48

3*4*2 =

24

3*4*3

= 36

3*4*5

= 60

A Modified Method for Optimizing Area and Speed in FFT Processors

Author(s): Amit Kumar Mishra, Prof. Ravi Mohan, SRIT, Jabalpur

International Journal of Modern Engineering & Management Research | Vol 2 | Issue 2 | June 2014 40

5. COMPARATIVE RESULTS

Table 2: Comparison table of Base 1 and

Proposed work (8 point FFT)

Since the Ref paper 2 is the work done

on 4 point FFT hence the table shown below is

the comparative results of 4 point FFT

Table 3: Comparison table of Base 2 and

proposed work (4 point FFT)

Here in the proposed work, no. of slices

are more as compared to Ref 2 but it can be

seen that Ref 2 have used additional multipliers

which is nil in proposed case. Therefore the

overall area of the proposed work is still less as

compared to Ref 2.

6. CONCLUSION

The proposed work is a double layer

optimization technique where firstly the

reduction in total number of basic butterflies

along with reduction in total number of

multipliers of FFT makes the proposed FFT,

area efficient and secondly the number of

multiplications that were left is done via Vedic

multiplication approach which increases the

speed.

Finally the synthesized and simulated

results so obtained show that the proposed

design is producing the expected and efficient

results as compared to Reference papers.

REFERENCES:

[1] Chen-Fong Hsiao, Yuan Chen, Chen-

Yi Lee, “A Generalized Mixed-Radix

Algorithm for Memory-Based FFT

Processors”, Vol. 51, No. 1, pp 1549-

7747 © IEEE, January 2010.

[2] G. Shafirulla, M. Subbareddy, “Design

of high speed FFT Processor Based on

FPGA, International Journal of Modern

Engineering Research (IJMER), Vol.2,

Issue.3, pp-657-660, May-June 2012.

[3] Mr. Abhishek Gupta, Mr. Utsav Malviya,

Prof. Vinod Kapse, “Design of Speed,

Energy and Power Efficient Reversible

Logic Based Vedic ALU for Digital

Processors”, “Nirma University

In t e r n a t i o n a l Co n f e r e n c e o n

Engineering”, IEEE, 2013.

[4] Saha, P, Banerjee, A. Bhattacharyya, P.

Dandapat, A., “High speed ASIC design

of complex multiplier using Vedic

Mathematics”, Students' Technology

Symposium (TechSym), 2011 IEEE.

[5] S. S. Kerur, Prakash Narchi, Jayashree C

N, Harish M Kittur and Girish V A,

“Implementation of Vedic Multiplier

for Digital Signal Processing”,

International Conférence on VLSI,

Communication & Instrumentation

(ICVCI) 2011.

[6] Abu Sadat Md. Sayem and Sajib Kumar

Mitra, “Efficient approach to design

low power reversible logic blocks for

field programmable gate arrays”, 978-

114244-8728-8/11/IEEE 2011.

[7] M. Mohamed Ismail, M.J.S Rangachar,

Ch. D. V. Paradesi Rao, “An Area

Efficient Mixed-Radix 4-2 Butterfly

with Bit Reversal for OFDM

Applications”, European Journal of

Scientific Research, ISSN 1450-216X

Vol.40 No.4 (2010), pp.515-521, ©

Euro Journals Publishing, Inc. 2010.

 Ref 1 Proposed

No. of slices 1989 1927

No. of 4 input

LUTs

3627 3405

Logical delay 600ns 32.557ns

No. of multi-

pliers

Nil Nil

 Ref 2 Proposed

No. of slices 562 637

No. of LUTs - 1127

Logical de-

lay

31.55ns 23.780ns

No. of multi-

plier

12(9x9 multi-

pliers)

NIL

A Modified Method for Optimizing Area and Speed in FFT Processors

Author(s): Amit Kumar Mishra, Prof. Ravi Mohan, SRIT, Jabalpur

