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Abstract—Data Mining is an analytic process 

designed to explore data (usually large 

amounts of data - typically business or market 

related - also known as "big data") in search 

of consistent patterns and/or systematic 

relationships between variables, and then to 

validate the findings by applying the detected 

patterns to new subsets of data. 

Most large retail organizations uses database 

mining, faces the problem of decision support. 

Development of bar-code technology has 

made able retail organizations to collect and 

store massive amounts of sales data. A record 

in such data typically consists of the 

transaction date and the items bought in the 

transaction. A sequence database consists of 

sequences of ordered elements or events, 

recorded with or without a concrete notion of 

time. There are many applications involving 

sequence data.  

In this paper we have presented an 

application of data mining on grocery shop 

database. This warehoused database is mined 

using PISA algorithms whose results can be 

utilized for decision making and comparing 

the performance of this algorithm with other 

algorithms like GSP+, SPAM+, and DirApp. 

Programs are coded in C++. 

1. INTRODUCTION 

Database mining is a decision support 

problem. Data mining is the process of 

extracting interesting patterns from huge data 

such as relational database, data warehouse etc. 

Data mining is becoming an increasingly 

important tool to transform these data into 

information. Data mining is often carried out 

only on samples of data. The mining process 

will be ineffective if the samples are not a good 

representation of the larger body of data.  

A sequence database consists of 

sequences of ordered elements or events, 

recorded with or without a concrete notion of 

time[1]. Typical examples include customer 

shopping sequences, Web click streams, 

biological sequences, sequences of events in 

science and engineering, and in natural and 

social developments. 

1.1 Sequential Pattern Mining 

Sequence Pattern Miningis the mining of 

frequently occurring ordered events or 

subsequences as patterns [9]. Also 

telecommunications and other businesses may 

use sequential patterns for targeted marketing, 

customer retention and many other tasks. Other 

areas in which sequential patterns can be 

applied include Web access pattern analysis, 

weather prediction, production processes, and 

network intrusion detection analysis. Most 

studies of sequential pattern mining 

concentrate on categorical patterns [9].  

The sequential pattern mining problem 

was first introduced by Agrawal and Srikant in 

1995[1] based on their study of customer 

purchase sequences, as follows: “Given a set of 
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sequences, where each sequence consist of a 

list of events (or element) and each event 

consists of set of items, and given a user 

specified minimum support threshold of 

min_sup, sequential pattern mining finds all the 

frequent subsequences, that is, the 

subsequences whose occurrence frequency in 

the set of sequences is no less than min_sup.” 

1.2 Progressive Database 

There have been many recent studies on 

the mining of sequential patterns in a static 

database, which do not fully explore the effect 

of deleting old data from the sequences in the 

database. When sequential patterns are 

generated, the newly arriving patterns may not 

be identified as frequent sequential patterns 

due to the existence of old data and sequences 

[7]. Even, the obsolete sequential patterns that 

are not frequent recently may stay in the 

reported results. Generally, users are more 

interested in the recent data than the old ones. 

To capture the dynamic nature of data addition 

and deletion, we propose a general model of 

sequential pattern mining with a progressive 

database while the data in the database may be 

static, inserted, or deleted. 

1.3 Progressive Sequential Pattern Mining 

The incremental mining algorithms do 

not consider the deletion of the obsolete data 

from the sequence database. Thus it is not 

applicable to a progressive database. However, 

if a certain sequence does not have any newly 

arriving elements, this sequence will still stay 

in the database and undesirably contribute to 

the number of sequences in the sequence 

database. Therefore, when new sequential 

patterns are generated, the new patterns which 

appear frequently in the recent sequences may 

not be considered as frequent sequential 

patterns because number of sequences in the 

sequence database is never reduced. In view of 

this, the infrequent sequential patterns whose 

timestamps are obsolete should be removed 

[7].  

Here we are using an algorithm PISA[2], 
which stands for Progressive mIning of 

Sequential pAtterns, corresponding to the 

mining in a progressive database. PISA takes 

the concept of period of interest (POI) into 

consideration. POI is a sliding window, whose 

length is a user specified time interval, 

continuously advancing as the time goes by. 

The sequences having elements whose 

timestamps fall into this POI, contribute to the 

number of sequences in the sequential database 

for current sequential patterns. On the other 

hand, the sequences having only elements with 

timestamps older than POI should be pruned 

away from the sequence database immediately 

and will not contribute to the sequence 

thereafter [7]. 

2. PISA ALGORITHM 

The main concept of PISA is to 

progressively update the information of each 

sequence and each candidate sequential pattern 

in the database. Using PS Tree it stores all 

sequences from one POI to another. PS-Tree is 

the core part of the algorithm PISA. It contains 

the information of all sequences in a 

progressive database and helps PISA to 

generate frequent sequential patterns in each 

POI. There are two types of nodes in the PS-

Tree: root node and common node. Root node, 

contains a list of common nodes as its children. 

Each common node stores its node label 

(element of the sequence) and a sequence list 

(list of sequence IDs to represent the sequences 

containing this element). Each sequence ID in 

the sequence list is marked by a corresponding 

timestamp.  

Whenever there are a series of elements 

appearing in the same sequence, there will be a 

series of nodes labeled by each element, 

respectively, with the same sequence IDs in 

their sequence lists. Then, the first node will be 

connected to the root node and the second node 

representing the following element will be 

connected to the first node. The other nodes 

will be connected analogously. In such a way, 

the path from root node to any other node will 
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represent the candidate sequential pattern 

appearing in this sequence. The appearing 

timestamp for each candidate sequential 

pattern will be marked in the node labeled by 

the last element. If there is another sequence 

having the same pattern, the sequence ID will 

be inserted into the sequence lists of the same 

node labeled by these elements on the path. On 

the other hand, if an element appearing in a 

sequence is obsolete, the corresponding 

sequence ID will be removed from the 

sequence list of the node. In addition, if a node 

has no sequence in the sequence list, it will be 

pruned away from PS-tree. Thus, there are 

only up-to-date candidate sequential patterns 

available in PS-tree. 

The main concept of PISA is to 

progressively update the information of each 

sequence and each candidate sequential pattern 

in the database. Using PS Tree it stores all 

sequences from one POI to another. PS-Tree is 

the core part of the algorithm PISA. It contains 

the information of all sequences in a 

progressive database and helps PISA to 

generate frequent sequential patterns in each 

POI. There are two types of nodes in the PS-

Tree: root node and common node. Root node, 

contains a list of common nodes as its children. 

Each common node stores its node label 

(element of the sequence) and a sequence list 

(list of sequence IDs to represent the sequences 

containing this element). Each sequence ID in 

the sequence list is marked by a corresponding 

timestamp.  

Whenever there are a series of elements 

appearing in the same sequence, there will be a 

series of nodes labeled by each element, 

respectively, with the same sequence IDs in 

their sequence lists. Then, the first node will be 

connected to the root node and the second node 

representing the following element will be 

connected to the first node. The other nodes 

will be connected analogously. In such a way, 

the path from root node to any other node will 

represent the candidate sequential pattern 

appearing in this sequence. The appearing 

timestamp for each candidate sequential 

pattern will be marked in the node labeled by 

the last element. If there is another sequence 

having the same pattern, the sequence ID will 

be inserted into the sequence lists of the same 

node labeled by these elements on the path. On 

the other hand, if an element appearing in a 

sequence is obsolete, the corresponding 

sequence ID will be removed from the 

sequence list of the node. In addition, if a node 

has no sequence in the sequence list, it will be 

pruned away from PS-tree. Thus, there are 

only up-to-date candidate sequential patterns 

available in PS-tree. 

3. COMPARISON OF THE 

PERFORMANCE OF THE 

ALGORITHMS 

In this section, we conduct several 

experiments to evaluate the performance of the 

proposed algorithm and the effects of input 

parameters. The only existing work that can 

deal with the progressive database still applies 

static mining algorithm to remind each sub 

database. We implement the simple 

conceivable algorithm, DirApp, as well. GSP+, 

SPAM+, and PISA are all coded in C++, and 

the experiments are executed on a computer 

with Pentium 4, 3-GHz CPU and 2-Gbyte 

RAM. First, we will describe the method to 

generate the synthetic data sets. Then, we show 

the performance improvement of PISA over 

GSP+, SPAM+, and DirApp. The execution 

time of fast version of PISA are also included. 

To give more insights into the proposed 

algorithm, we will investigate the effects of 

some parameters. To investigate the searching 

space of DirApp and PISA, we calculate the 

maximum memory usage of each algorithm. 

We will show the trend of memory usage.  

3.1 Experiment Design 

The synthetic data sets are generated in a 

way similar to the IBM data generator 

designed for testing sequential pattern mining 

algorithms. Several parameters can be assigned 

to produce different synthetic data sets. We use 

Netflix Prize data as the testing workload, 

which contains 17,770 different items and 

480,169 users. The previous works about 
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incremental sequential pattern mining append 

the newly arriving elements of all sequences 

directly to the end of the original sequence 

database. They do not concern themselves with 

the POI, but instead, take the whole database 

of all elements into consideration. In our work, 

the obsolete elements which exceed the POI 

will be deleted from the sequence database. 

For this reason, each element should be 

designated an arriving timestamp. The items in 

this interval are combined as an element at a 

timestamp. Thus we transform the format of 

the generated data sets. First, we divide the 

target data set into n timestamps. According to 

the input parameter POI, the first m 

timestamps are viewed as the original database 

and the rest of elements in the data set are 

received by the system incrementally.  

The length of POI is inevitably smaller 

than n, and the overall timestamps must be 

longer than the maximum number of elements 

that one sequence produces. The first run of the 

experiments mines the first POI from the 

beginning m timestamps of the data set ðm ¼ 

POI Þ. After that, we shift the POI one 

timestamp forward for the following runs. In 

this way, the elements in the up-to-date 

timestamp stand for the incremental part of the 

sequence database, and the obsolete elements 

are deleted. As for GSP+ and SPAM+, we 

retrieve the elements of corresponding m 

timestamps in the data set in each run and feed 

them into the system. Then, GSP+ and 

SPAM+ remine the input elements of m 

timestamps in that iteration. Because the 

remining process takes excessive time, we 

move POI t timestamps ðt mÞ forward instead 

of shifting POI only one timestamp forward in 

every run for better execution time of GSP+ 

and SPAM+. Therefore, the sequential patterns 

in the skipped POIs cannot be generated by 

GSP+ and SPAM+. In contrast, while 

performing even more efficiently, algorithms 

DirApp and PISA are still able to produce 

sequential patterns for every POI when 

processing newly arriving elements with 

multiple timestamps at the same time, showing 

the progressive advantage over the 

competitors. The experiment shows the 

cumulative time of continuous runs of the 

algorithms. Except the experiment, every point 

on the figure in the other experiments has the 

total execution time of 16 runs. That is, there is 

a total of 40 timestamps and POI is set as 10. 

In addition to the first run of the first POI, 

there are other runs of incremental sub 

databases (two timestamps forward) fed into 

the system contributing the reported time of 

every point. If there is no specific description, 

the minimum support threshold is set to 0.02 

and the number of different items is set to 

1,000. Because there is no special trend of 

execution time or memory usage on the 

number of different items, we do not include 

the result of this experiment in this paper. As 

for real data sets, we randomly choose 

successive 120 days for the performance 

evaluation. A timestamp is set as 3 days in 

order to obtain sufficient frequent sequential 

patterns. Therefore, there is a total of 40 

timestamps and POI is set as 10, which meets 

the same environment as synthetic data sets. In 

this way, the new data sets contain more than 

5,000 sequences and 2,000 different items.  

Figure 1 : Cumulative execution time. 

3.2 Cumulative Execution Time 

The algorithm PISA is a progressive 

algorithm to handle the situation that the POI 

advances over time. Figure 1 shows the 

superiority in terms of cumulative execution 

time of PISA over GSP+, SPAM+, and 

DirApp. We record the execution time of all 

algorithms at each timestamp from the 

beginning to the end. Then, we show the 

accumulated time from the beginning 

timestamp to the current one as cumulative 
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execution time in Figure 1. The last point of 

each algorithm represents the total execution 

time needed by the algorithm for processing 

the whole data set. We see that as the first 

point of each series shown in Figure 1, PISA 

consumes shorter execution time than the 

competitors in each single run. This is because 

only one scan of the PS tree is needed by Pisa, 

which combines the sequences having the 

same pattern together. However, GSP+ has to 

scan sub database multiple times to check the 

occurrence frequencies of candidate sequential 

patterns. SPAM+ has to scan a big 

lexicographic sequence tree of all the items and 

the candidate sequential patterns. As for 

DirApp, the candidate sets of all sequences 

involve a lot of computation time. 

Furthermore, as the POI advances over time, 

PISA and DirApp need to process only new 

elements that lie at arriving timestamps, but 

GSP+ and SPAM+ have to rerun the mining 

process on the whole sub database. Therefore, 

the cumulative execution time of PISA and 

DirApp shows more superiority against GSP+ 

and SPAM+. But, with the help of PS-tree, 

PISA is more efficient than DirApp while they 

update the sequences by more than 10 times.  

3.3 The Effects of the Input Parameters 

In the following experiments, we 

examine the effects of the input parameters, the 

minimum support, and the POI. Figure 2a 

shows the total execution time of all algorithms 

over different minimum support values. The 

execution time of GSP+ and SPAM+ grows as 

the minimum support value reduces. When the 

minimum support is set to 2 percent, the 

execution time of GSP+ is more than 106 

times of PISA and the execution time of 

SPAM+ is more than 61 times of PISA. The 

reason is that as the minimum support value 

diminishes, the number of candidate sequential 

patterns generated by GSP+ and SPAM+ 

increases considerably. Thus, the scanning 

time of all candidate sequential patterns needed 

by GSP+ and SPAM+ increases incredibly. On 

the other hand, the execution time of PISA and 

DirApp over different minimum support values 

remains the same. 

 
Figure 2. (a) Total execution time.  

 
Figure 2. (b) Memory usage with minimum supports 

varied. 

It is because they generate the same 

number of candidate sequential pattern 

irrespective of the minimum support value. 

Therefore, the processing time of all candidate 

sequential patterns is the same over different 

minimum support values.  

4. CONCLUSION 

The sequential patterns generated by a 

progressive database over time should be 

updated accordingly [3]. This project aimed at 

maintaining the latest sequences, finding the up

-to-date sequential patterns and delete obsolete 

patterns on the fly. The proposed algorithm 

PISA efficiently handles the problem of 

sequential pattern mining over progressive 

data. It is seen that PISA requires a single scan 

of the PS-tree, which is a candidate structure 

for this algorithm. This generalized model was 

further extended to accept new data and 

generate the modified PS-tree dynamically. 

PISA was then modified to generate weighted 
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patterns depending on the timestamps of 

occurrence of individual items in the pattern. 

The enhanced version of PISA now provides a 

certain amount of data hiding. In this, the 

actual data is hidden from the user by adding 

certain spurious values, such that they do not 

affect the original outcome of the algorithm.  

Thus PISA is a generalized model for 

sequential pattern mining which works on 

categorical data. It can further be extended to 

discover correlations and trends in numerical 

data in order to widen its scope of application.  
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