

Volume 7 Issue 3 | September 2019

ISSN: 2320-9984 (Online)

International Journal of Modern Engineering & Management Research

Website: www.ijmemr.org

Experimental Based Prediction of Shear Strength of Friction Surfaced Tool Steel Deposit by Using Artificial Neural Networks

V. Pitchi Raju

Professor
Department of Mechanical Engineering
Indur Institute of Engineering & Technology
Siddipet, (T.S.) [INDIA]
Email: vpraju2000@gmail.com

Abstract—An artificial neuron network (ANN) is a computational model is widely used for computation work in the engineering filed. ANN is used by the so many researcher for various worked here in this paper I am used the ANN as Computation model for prediction of Shear strength friction surfaced. ANNs are considered nonlinear statistical data modeling tools where the complex relationships between inputs and outputs are modeled or patterns are found. Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing input process parameters such as friction pressure, rotational speed and welding speed. The simulation is performed by a 3³-factor design that takes into account the maximum and minimum limits of the experimental work performed by the 2³-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were

used to predict shear strength of tool steel sediments caused by friction.

Keywords:— Friction surfacing, Artificial Neural Networks (ANN), Process Parameters.

1. INTRODUCTION

Recently, with the developments in artificial intelligence; researchers have a great deal of attention to the solution of non-linear problems in physical and mechanical properties of metal alloys [1]. Researchers are putting much emphasis on the manufacturing, shaping, bonding problems to widespread the use of composites in common industry markets. The produce of composites, Ni-Ti alloys to have been used with powder metallurgy method and which produce of composites, determine of using field important to present [2]. Joining of the powder metallurgy products (P/M) by diffusion bonding process is important both to protect the microstructural properties of parent materials and bonding behavior of joining materials [3]. Friction surfacing is an advanced technology that can effectively deposit a metal on another metal. In this process, the consumable rod is rotated and forced against the substrate in the axial direction. A large quantity of hotness is produced due to the friction among the consumable rod and the friction contact surface between the substrates, and the contact end of the metal consumption rod is plasticized after a certain period of time. The substrate is then horizontally moved to a vertically consumable rod, so that a layer of mechanical material is deposited on the substrate. Friction surface treatment has been used for a variety of hard surface metal coatings, such as mild steel or stainless steel coating on the tool steel coating. In this process, the strong adhesion between the coating and the substrate can only be achieved by applying a high contact pressure, but this requires expensive machinery [1, 2]. Friction surface treatment has significant advantages over conventional fusion welding processes. This novel process correlates many process parameters, which directly affect the quality of the deposit. In this process, the obtained coating is fairly flat and regular, and there is no conventional cross-sectional profile of the invasive meniscus [3]. This process can be considered in another key area that is damaged and damaged by the reclamation and repair of engineering components [4]. A number of industrial applications have been observed in friction surface treatment and are mainly used to deposit hard materials on the cutting edges of various tools required for the food processing, chemical and medical industries. The process can be widely used in tool steel, aluminum, stainless steel and mild steel, copper-nickel alloy and other materials [5-7]. This innovation process can be carried out in open air [8], water [9] and inert gas [10]. In the process, the right choice of process factors is critical to attaining the quality of the coating. The axial force acting on the consumable rod, the rotational speed of the rod and the transverse velocity of the substrate are the main process parameters affecting the coating properties such as coating thickness, coating width and adhesive strength. In order to achieve the desired mechanical properties, it is necessary to understand the correlation between mechanical properties and process parameters. Okuyucu Kurt and Areaklioglu [11] obtained correlation between mechanical properties and FSW parameters artificial neural networks (ANNs), whose

attempts focused on linking parameters rather than optimizing them. Now in the field of metal processing, the use of artificial neural net works is also increasingly important. The focus of this study is on computer-aided ANN models to predict shear strength of tool steel M2 deposits formed by friction surfaces. Due to the limitations of the experimental work, the simulation was carried out by taking into account the maximum and minimum 33 factor designs experimental work carried out by 23 factor designs. The feed forward neural network (FFNN) was used to predict the and shear strength of the friction surfacetoolsteel M2 sediments.

Artificial neural networks (ANNs) can be used in various fields of engineering applications, by using the input data to obtain the required information, to overcome the shortcomings of traditional methods [12]. The prediction of the friction surface response is carried out by the mathematical modeling of ANN, which represents the shear strength of the input parameters.

Computers are an integral part of day to day activities in engineering design and engineers have utilized various applications to assist them improve their design [11-12]. ANN mimic some basic aspects of the brain functions. ANNs are based on the neural structure of the human brain, which processes information by means of interaction between many neurons and in the past few years there has been a constant increase in interest of neural network modeling in different fields of materials science. The basic unit in the ANNs is the neuron. The neurons are connected to each other with weight factor [13-14]. Artificial neural networks (ANNs) are networks of highly interconnected neural computing elements that have the ability to respond to input stimuli and to learn to adapt to the environment. ANN includes two working phases, the phase of learning and that of recall. During the learning phase, known data sets are commonly used as a training signal in input and output layers. The recall phase is performed by one pass using the weight obtained in the learning phase. ANN is now a well established tool and details about it can be found elsewhere. Various nomenclatures are used to describe neural network paradigms [15-16-17]. Whereas, a single-layer network has single input/output units, a multi-layer network has one or more hidden units between input and output layers Figure 1.

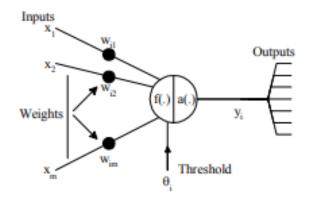


Figure 1. AI Block Diagram

The structure of the feedforward neural network (FFNN) consisting of three layers consists of a concealment and output layer and an arbitrary activation function is a general approximator [12]. The architecture of the FFNN network model is shown in Figure 2.

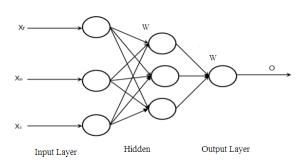


Figure 2. Architecture of FFNN network model

Figure 1 depicts the network model of input neurons, hiding neurons and output neuronal structures. Input layers include network input process parameters such as friction pressure, velocity, and welding speed. Hidden layers include neurons known to map points in the input area to coordinates in the output area. The output area is called the

transfer function of the activation function processing input layer. In this case, the hyperbolic tangent function is selected as the activation function because it tests the minimum mean square error between the other functions, such as Gaussian and logarithmic functions [12].

2. EXPERIMENTAL WORK

The main process constraints such as friction, rotational speed and welding pressure are selected as the process constraints for the investigational procedure of numerous manageable process parameters which affect the shear strength of the friction surface tool steel M2.

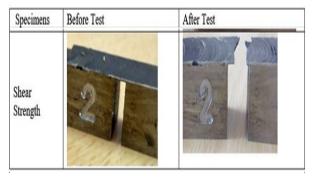
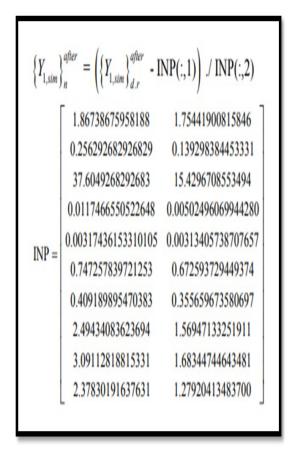

For the experimental work, the range of the friction pressure (X1) was set to 105 kN, the mechanical speed (X2) was (100-300 rpm), and the substrate traverse speed (X3) was (40-60 mm / min). The main parameters with 23 factor designs were selected and the tool steel M2 was deposited on the mild steel. The sediments obtained from these eight treatments are shown in Table 1. After each test, a preliminary test was conducted in the workshop to determine the bond strength of the low carbon steel tool steel deposits.

Table 1. The process parameters used and tool steel deposits over low carbon steel obtained in the experimental work.

Process Prameters						
	X1	X2	Х3	Shear Strength		
тс	Mpa	Rpm	Mm/min			
1	5	100	40	40		
2	15	500	60	7:		
3	10	300	45	49		
4	5	100	40	59		
5	10	300	60	47		
6	10	300	70	6:		
7	5	100	60	64		
8	10	300	50	39		
9	15	500	40	9		
10	10	300	60	4:		
11	5	100	60	25		
12	15	500	60	8		
13	5	100	40	4		
14	5	100	40	65		
15	10	300	50	54		
16	15	500	60	6:		
17	10	300	50	87		
18	15	500	60	54		
19	5	100	40	53		
20	5	100	40	33		

determined The strength was experimentally by applying a tangential force in the contact area by test method and shear strength. The values obtained are listed in Table 1. strength is of paramount importance for designing various engineering components such as containers, pressure vessels, turbine blades, helicopter blades and pumps. Samples for strength tests have square-sized deposits and have round holes from the other side of the sample. The friction surface of the tool steel deposits is separated from the low carbon steel substrate by the influence of the tension applied by the indenter. The strength of the sample is then calculated by the ratio of the applied load to the bearing area of the sample. The shear strength test is of the utmost importance for the design point of view, which is determined by applying tangential loads to the deposit. The shear strength of the specimen is calculated by dividing the applied load by the shear area. strength test before and after the test sample in Table 2.

Table. 2. Specimens before and after testing



3. EFFECT OF PROCESS PARAMETERS ON BOND STRENGTH OF THE DEPOSIT

3.1. Determination of Regression Equations

Construct the variance analysis (ANOVA) table to check the importance of all the process parameters for the strength to determine the regression equation. The regression equation for the response to strength, after eliminating less important terms, can be rewritten as y = 103.4 + 15.125X1 + 21.875X2 + 6.875X3

-18.87 X1X3 + 21.875X2X3 Similarly, the regression equation for the shear strength after eliminating the least significant term can be rewritten as y = 43.75 + 4.5X1 + 9.75x2 + 4.25X3-9X1X3 + 11.25X 2X3

Prediction of Shear Strength by using Artificial Neural Network (ANN)

The MATLAB R2012a version of the neural network toolbox is used to develop artificial neural networks (ANN) models for predicting the and shear strength of frictional surface sediments. The input layer consists of three process parameters, namely, friction pressure, speed and welding speed, the output layer represents the strength and shear strength. Initially enter the input data into the neural network, and then simulate to achieve the output. When creating a neural network, the velocity constants and the maximum number of neurons are changed to achieve different results. This is done by using trial methods. The experimental error parameters of the artificial neural network (ANN) model are shown in Table 3.1.

Table 3.1 Experimental plan for selecting process parameters

TC	Friction pressure	Rotational speed	Welding speed
	MPa	rpm	mm/min
1	5	100	40
2	7.5	100	40
3	10	100	40
4	5	100	50
5	7.5	100	50
6	10	100	50
7	5	100	60
8	7.5	100	60
9	10	100	60
10	5	200	40
11	7.5	200	40
12	10	200	40
13	5	200	50
14	7.5	200	50
15	10	200	50
16	5	200	60
17	7.5	200	60
18	10	200	60
19	5	300	40
20	7.5	300	40
21	10	300	40
22	5	300	50
23	7.5	300	50
24	10	300	50
25	5	300	60
26	7.5	300	60
27	10	300	60

The effect of process parameters such as friction pressure, rotational speed and welding speed on mean of potency and mean of shear potency are indicated in the figures 2.

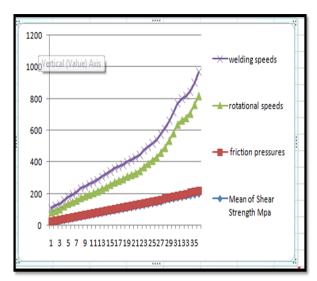


Figure 2: Variation of mean of shear strength at different friction pressures / at different rotational speeds/welding speeds

Table : different Variation with Mean Value

Mean of Shear Strength Mpa friction pressures rotational speeds welding speeds 22 3 60 25 25 3.2 65 30 30 3.5 70 33 35 3.8 85 35 40 4.5 95 40 45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190<	value					
25 3.2 65 30 30 3.5 70 33 35 3.8 85 35 40 4.5 95 40 45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 </th <th></th> <th></th> <th></th> <th></th>						
30 3.5 70 33 35 3.8 85 35 40 4.5 95 40 45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 1	22	3	60	25		
35 3.8 85 35 40 4.5 95 40 45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 145 11.1 275	25	3.2	65	30		
40 4.5 95 40 45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 145 11.1 275 110 150 11.4 300	30	3.5	70	33		
45 4.7 100 45 50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 <td>35</td> <td>3.8</td> <td>85</td> <td>35</td>	35	3.8	85	35		
50 4.8 105 50 55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 <tr< td=""><td>40</td><td>4.5</td><td>95</td><td>40</td></tr<>	40	4.5	95	40		
55 5.4 115 58 60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115	45	4.7	100	45		
60 5.8 120 60 65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 <	50	4.8	105	50		
65 6.4 125 65 70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 185 14.9	55	5.4	115	58		
70 6.9 130 67 75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 <	60	5.8	120	60		
75 7.5 135 70 80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132	65	6.4	125	65		
80 7.9 145 75 85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2<	70	6.9	130	67		
85 8 150 80 90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	75	7.5	135	70		
90 8.5 160 82 95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	80	7.9	145	75		
95 8.9 170 85 100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	85	8	150	80		
100 9.2 175 87 105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	90	8.5	160	82		
105 9.4 180 89 110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	95	8.9	170	85		
110 9.7 190 92 115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	100	9.2	175	87		
115 9.9 195 95 120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	105	9.4	180	89		
120 10 200 99 125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	110	9.7	190	92		
125 10.3 210 101 130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	115	9.9	195	95		
130 10.5 230 104 135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	120	10	200	99		
135 10.7 245 106 140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	125	10.3	210	101		
140 10.9 260 108 145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	130	10.5	230	104		
145 11.1 275 110 150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	135	10.7	245	106		
150 11.4 300 115 160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	140	10.9	260	108		
160 11.8 320 119 165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	145	11.1	275	110		
165 11.9 360 125 170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	150	11.4	300	115		
170 13.4 400 130 175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	160	11.8	320	119		
175 13.7 450 132 180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	165	11.9	360	125		
180 14.5 470 135 185 14.9 480 138 190 17.2 500 139	170	13.4	400	130		
185 14.9 480 138 190 17.2 500 139	175	13.7	450	132		
190 17.2 500 139	180	14.5	470	135		
	185	14.9	480	138		
195 17.8 550 140	190	17.2	500	139		
	195	17.8	550	140		
200 18.9 600 150	200	18.9	600	150		

4. RESULTS AND DISCUSSIONS

From the regression equation, the results show that the strength is proportional to the combined effect of friction pressure, rotational speed, speed and welding speed. From the prediction of artificial neural network (ANN) model, the average value of strength and shear strength increases with the increase of friction pressure, rotational speed and welding speed. Therefore, ANN can be used to determine the effect of process parameters on bond strength.

Approximate value	Result Value
5	10
10	15
15	17
20	20
25	22
30	24
37	25
39	28
41	33
43	36
47	38
48	39
49	40
51	41
53	43
55	45
58	48
60	51
62	52
63	53
65	57
70	59
73	60
77	65
80	69
85	70
90	73
95	77
99	80
100	85

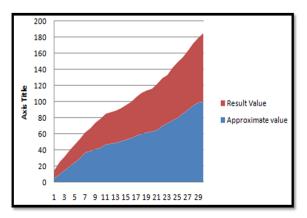


Figure 3: Approximate Value and Result Value

5. CONCLUSIONS

Bvchanging the input process parameters, with different factor designs were used to perform experiments on a friction surfacing machine. Due to the limitations of the experimental work, taking into account the maximum and minimum experimental work, carried out a 3 3 times the design of the simulation. The shear strength of the samples were measured using a universal testing machine. It can be seen from the regression equation that the shear strength proportional to the friction pressure, the rotational speed and the welding speed. The shear strength of the tool steel M2 deposit produced by the friction surface treatment is predicted by a feed forward neural network (FFNN) using artificial neural networks (ANN). The results show that the predicted values are closely related to the experimental values. Thus, ANN technology is the most effective method for predicting the shear strength in friction surface treatment and can also be tested in many other surface modification processes. Therefore, ANN is an alternative to validating experimental values.

REFERENCES:

- [1] P.Lambrineas et al.1990 Institute of Engineering, Australian Tribology Conference. edited by D.Scott, Institute of Engineering Australian National Conference, 90 (14) 23
- [2] B M Jenkins and E D Doyle 1987

- Proceedings of the International Tribology Conference Australian National conference, 87(18)
- [3] V Sugandhi and V. Ravi Kumar 2012
 Optimization of Friction Surfacing
 Process Paramters for AA1100
 Aluminum Alloy Coating with Mild
 Steel Substrate using Response
 Surface Methodology (RSM)
 Technique. Modern Applied Science,
 published by Canadian Center of
 Science and Education, 6(2) 69-73
- [4] Yamashita Y and Fujita K 2002 Newly developed repairs on welded area of LWR stainless steel by friction surfacing. Journal of Nuclear Science Technology, 105-12.
- [5] Puli R and Ram GDJ 2012 Microstructures and Properties of Friction Surfaced Coatings in AISI 440C Stainless Steel. Surf Coat Tech, 207(310)
- [6] Hanke S el al. 2011 Cavitation Erosion of NiAl – Bronze Layers Generated by Friction surfacing. Wear, 273(32)
- [7] Govardhan D et al. 2012 Characterization of Austenitic Stainless Steel Friction surfaced Deposit Over Low Carbon Stee. 36 (206)
- [8] Tokisue H and Katoh K 2005 Structures and mechanical properties of multilayer friction surfaced aluminum alloys. Report of the research Institute of Industrial Technology Nihon University,78
- [9] Li JQ and Shinoda T 2000 Underwater friction surfacing. Surface Engineering, 16(1) 31-35
- [10] Chandrasekaran M and Batchelor AW 1997 Study of the interfacial phenomena during friction surfacing

- of aluminum with steel. Journal of Material Sciences, (32) 6055-6062
- [11] H Okuyucu et al. 2007 Artificial neural network application to the friction-stir welding of aluminum plates. Materials & Design, 28 (1), 78 -84
- [12] K. Brahma Raju et al. 2012 Prediction of Strength of Friction Stir Welded Joints Using Artificial Neural Networks. International Journal of Engineering Research & Technology (IJERT), 1(9)